In [ ]:
Linear Regression
In [1]:
import numpy as np
import matplotlib.pylab as plt
%matplotlib inline
In [2]:
def regression(X, Y):
Xd = np.dot(np.linalg.inv(np.dot(X.T, X)), X.T)
return np.dot(Xd, Y)
In [3]:
Inp = np.array([10, 2, 11, 5, 40, 2, 6, 9]).reshape((4,2))
Out = np.array([5,2,8,1])
In [4]:
X = np.append(np.ones((4,1)), Inp, axis = 1)
In [5]:
W = regression(X,Out)
In [6]:
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(Inp[:,0], Inp[:,1], Out, c='r', marker='o')
plt.show()
In [ ]: